张恭庆:数学与国家实力(下)

发布时间:2015-04-24

● 我们不能要求决策者本人一定要懂得很多数学,但至少要经常想想工作中有没有数学问题需要请 数学家来咨询。

● 因为数学是科技创新的一种资源,是一种普遍适用的并赋予人以能力的技术。

四、数学与国防

在二战中,数学家对于盟军取胜起到了什么作用? 

冯·诺依曼是 20 世纪一位顶级数学家,也是第一台电子计算机程序和存储的研制构思者。他对 美国原子弹的制造做了两大贡献:一是帮助洛斯阿拉莫斯找到了数学化的途径。“数学化”是指用快 速计算机去模拟计算原子弹的爆炸过程和爆炸威力。二是研究爆聚炸弹,就是把一些炸弹、原子弹捆 绑起来发出更大的威力。

乌拉姆是波兰数学家,他从欧洲逃到美国后参加了曼哈顿计划。为了模拟核实验,他发明了蒙特 卡罗计算方法。前苏联大数学家柯尔莫哥洛夫在二战中提出了平稳随机过程理论。美国数学家维纳提 出了滤波理论,这些理论对于排除噪音的干扰,处理雷达所得的信息发挥了作用。

英国数学家图灵是设计出通用数字计算机的第一人。二战中,他与一些优秀数学家一起,最终破 译了德军所用的密码体制 Enigma。美国的密码分析学家也于 1940 年破译了日本的“紫密”密码。1942 年日本突袭中途岛海战失败,一个重要原因是美国破译了日本攻击中途岛的情报;1943 年 4 月,利 用所破译的情报,美国打下了山本五十六的座机,成为密码史上精彩的一页。

在现代化战争中,数学的作用更为突出。在武器方面有核武器、远程巡航导弹等先进武器的较量。 在信息方面有保密、解密、干扰、反干扰的较量。对策方面有战略、策略、武器配制等方面的较量。 每一项都和数学有紧密的关系。

核反应过程是在高温高压下进行的,核爆炸的巨大能量在微秒量级的时间内释放出来,很难在核 试验中测量出核爆炸内部的细微过程,只能得到一些综合效应的数据。但通过核反应过程的数学模型, 进行数值计算却可以给出爆炸过程中各个细节的图像、定量的数据以及各种因素与机制的相互作用。 在参加全面禁止核试验条约后,通过数值计算模拟核试验就更重要了。

在巡航导弹方面,《解放军报》在一篇《数学的威力》报道中写道: “一个方程将卫星图像质 量提高 30%,一个公式改变了一个部队的知情模式。”

信息的“加密”与“解密”是一种对抗,正如人们所说 “魔高一尺,道高一丈”。而这种对抗 力量的表现全在所依靠的数学理论之上。例如,公开密钥算法大多基于计算复杂度很高的难题,要想 求解,需要在高速计算机上耗费许多时日才能得到答案。这些方法通常来自于数论。例如,RSA 源于 整数因子分解问题,DSA 源于离散对数问题,而近年发展快速的椭圆曲线密码学则基于与椭圆曲线相 关的数学问题。自从费曼提出量子计算机以来,人们希望设计出一种计算机,它能实现在冯?诺依曼 计算机上不能实现的算法。如果一旦能把某种类型的计算速度大大增加,那么破解现有的密码就有可 能。1994 年数学家 Shor 已经对假想的量子计算机,提出了一种大合数的因子分解方法,其复杂度大 大降低,使得在量子计算机上有可能破解许多现有的密码。 

从大的战役指挥,到小的作战方案,都需要了解敌我双方的实力,运筹帷幄,不打无准备之仗。 这都需要进行定量化分析,建立模型,形成随机应变的作战指挥系统。其中概率统计、运筹学等数学 分支发挥着重要作用。

五、数学与国民经济

数学与国民经济中的很多领域休戚相关。互联网、计算机软件、高清晰电视、手机、手提电脑、 游戏机、动画、指纹扫描仪、汉字印刷、监测器等在国民经济中占有相当大的比重,成为世界经济的 重要支柱产业。其中互联网、计算机核心算法、图像处理、语音识别、云计算、人工智能、3G 等 IT 业主要研发领域都是以数学为基础的。所以信息产业可能是雇用数学家最多的产业之一。这里用到许 多不同程度的数学工具,有的还有相当的深度,包括:编码、小波分析、图像处理、优化技术、随机 分析、统计方法、数值方法、组合数学、图论等等。

上世纪 70 年代之后,计算机技术和计算流体力学的发展使数值模拟在大型客机的研制中发挥了 巨大作用,计算流体力学与风洞试验、试飞一起并列成为获得气动数据的三种手段。

传统的大型工程,如水坝的设计需要对坝体和水工结构作静、动应力学分析。数学中的有限元方 法是其中最基本的计算方法。

在石油勘探与开采中都大量运用数学方法,涉及到数字滤波、偏微分方程的理论和计算以及反问 题等。

数学模拟在化学工业中也起很大的作用。被称为现代化工之父的美国人埃莫森,把有些化工实验 在“小试”阶段之后,通过成熟的数学建模手段取代“中试”,直接进入“大试”, 缩短了实验周 期,节省了经费。

现代医疗诊断中常用的 CT 扫描技术,其原理是数学上的拉东变换。 CT 螺旋式的运动路线记录 X 光断层的信息。计算机将所有的扫描信息按数学原理进行整合,形成一个详细的人体影像。在更先进 的生物光学成像技术的研究中也吸引了不少数学家的参与。

药物检验—要评估一种新药能否上市,需要经过新药疗效测试,这就要科学地设计试验,以排除 各种随机性的干扰,真正评估出药物的效果和毒性。为此,人们设计出了双盲试验等试验手段。国外 流行的 SAS 软件,是药物检验的必经之径。发达国家制药公司聘用大批拥有数理统计学位的雇员从事 药检工作。

国际金融市场用“金融高技术”运作。“金融数学”是利用数学工具来研究金融,进行数学建模、 理论分析、数值计算等定量分析的一种金融高技术。它是数学和计算技术在金融领域的应用。华尔街 和一些发达国家大银行、证券公司高薪雇用大批高智商的数学、物理博士从事资本资产定价、套利、 风险评估、期货定价等方面的工作。

发达国家的保险业中早已使用“精算”为金融决策提供依据。精算学是一门运用概率、统计等数 学理论和多种金融工具,研究如何处理保险业及其他金融业中各种风险问题的定量方法和技术的学 科,是现代保险业、金融投资业和社会保障事业发展的理论基础。

灾害预测与风险评估关乎国计民生。数值模拟是大气科学、地震预测等实验性科学中的重要实验 手段。而要提高预测的准确性必须缩小计算网格 (提高分辨率)、复杂化物理过程,这些都导致计算 量呈几何级数增加,解决的途径不仅要加大计算机、加快计算机的速度,还要改进数学方法。

有关的研究表明,我们国家计算软件工业相对落后,并不是因为我们缺少一般的程序人员,而是 缺乏有较高数学修养的高水平的程序开发人员。与此相对照的是,比如贝尔实验室、朗讯、IBM、微 软、谷歌、雅虎这类 IT 行业领袖,不但大量地招聘数学专业的博士、硕士到公司工作,而且还专门 设有相当规模的数学研究部门,支持数学家开展纯粹数学理论研究,以确保长期的核心竞争力。IBM 公司还为本公司五万名咨询人员建立了数学学历档案,以便能够针对每项工作任务,指派最合适的团 队人员。

六、数学与文化教育

(一)数学是一种文化

数学作为现代理性文化的核心,提供了一种思维方式。这种思维方式包括:抽象化、运用符号、 建立模型、逻辑分析、推理、计算,不断地改进、推广,更深入地洞察内在的联系,在更大范围内进 行概括,建立更为一般的统一理论等一整套严谨的、行之有效的科学方法。按照这种思维方式,数学 使得各门学科的理论知识更加系统化、逻辑化。

作为一种文化,它的特点在于:

—追求一种完全确定的、完全可靠的知识。在数学上是非分明,没有模棱两可。即使对于“偶然” 发生的随机现象,对于“不确定”的事件,也要提出精确的概念和研究方法,确切回答某个事件发生 的概率是多少,在什么确切的范围以内等等。

—追求更深层次的、更为简单的、超出人类感官的基本规律。数学家们是把原始的来自实际的问 题,经过了层层抽象,在抽象的、仍然是客观事物真实反映的更深层次上来考察、研究其内在规律。

—它不仅研究宇宙的规律,而且也研究它自己。特别是研究自身的局限性,并在不断否定自身中 达到新的高度。由此可见,数学文化是一种非常实事求是的文化,它体现了一种真正的探索精神,一 种毫不保守的创新精神。

(二)数学教育的重要性

在知识社会,数学对于国民素质的影响至关重要。1984 年美国国家研究委员会在《进一步繁荣 美国数学》中提出:“在现今这个技术发达的社会里,扫除‘数学盲’的任务已经替代了昔日扫除文 盲的任务,而成为当今教育的主要目标”。1993 年美国国家研究委员会又发表了《人人关心数学教 育的未来》的报告,提出:“除了经济以外,对数学无知的社会和政治后果给每个民主政治的生存提 出了惊恐的信号。因为数学掌握着我们的基于信息的社会的领导能力的关键。” 当年读了这后一段 话,很不理解,发生“棱镜事件”之后才恍然大悟。

在我国有没有扫除“数学盲”的必要?答案是肯定的。

普及数学知识。信息社会对于公民的逻辑能力要求明显提高。中、小学数学教育最主要的目的之 一,应当在于提高学生的逻辑能力。因此数学作为一种“思想的体操”,应该是中、小学义务教育最 重要的组成部分。此外,多举办各种科学普及讲座,向公众普及数学知识,介绍数学在各个领域中的 应用也是必要的。

数学开阔人的视野,增添人的智慧。一个人是否受过这种文化熏陶,在观察世界、思考问题时会 有很大差别。数学修养不但对于一般科学工作者很重要,就是有了数学修养的经营者、决策者,在面 临市场有多种可能的结果,技术路线有多种不同选择时,也有可能减少失误。亿万富翁詹姆斯·赛蒙 斯就是一个最好的例证。在进入华尔街之前,赛蒙斯是个优秀的数学家,进入华尔街之后,他和巴菲 特的“价值投资”理念不同,赛蒙斯依靠数学模型和电脑管理旗下的巨额基金,用数学模型捕捉市场 机会,由电脑做出交易决策。他称自己为“模型先生”,认为建立好的数学模型可以有效地降低风险。

发达国家在大型公共设施建设,管道、网线铺设以及航班时刻表的编排等方面,早已普遍应用运 筹学的理论和方法,既省钱、省力又提高效率。可惜,运筹学的应用在我国还不普遍。其实我们不能 要求决策者本人一定要懂得很多数学,但至少要经常想想工作中有没有数学问题需要请数学家来咨 询。

加强和改善高等数学教育,培养创新人才。在 1988 年召开的国际数学教育大会上,美国数学教 育家在 “面向新世纪的数学的报告”中指出,“对于中学后数学教育,最重要的任务是使数学成为 一门对于怀着各种各样不同兴趣的学生都有吸引力的学科,要使大学数学对于众多不同的前程都是一 种必要的不可少的预备”。对于我们来说,就是改革“高等数学课”,使得它对于非数学专业的学生 都有吸引力,而且也使他们学到的内容能在今后工作中发挥作用。因为数学是科技创新的一种资源, 是一种普遍适用的并赋予人以能力的技术,改善高等数学教育,提高大学生的数学水平,定将促进这 种资源的开发和科技的创新。

壮大应用数学队伍,重视纯粹数学的研究和人才。今天,数学几乎已经深入到我们能想到的一切 方面。这么多有用处的数学,表面上看都属于应用数学,然而,纯粹数学与应用数学的关系如同一座 冰山,浮在水面上的是应用数学,而埋在水下的是纯粹数学。没有埋于水下的深厚积累,这些“应用” 是建立不起来的。数学是一个有机的整体,许多深刻的纯粹数学理论把看似毫不相关的概念和结论链 接了起来,为研究现实世界中的问题提供强有力的思想和方法。无数事例证明:许多当时看不到有任 何应用前景的纯粹数学理论,后来在现实世界应用中发挥了巨大作用。例如:数论与现代密码学,调 和分析与模式识别,几何分析与图像处理,随机分析与金融等等不胜枚举。

人们认为:下一次科技革命将以人类三种新的“生存形式”为重要标志,即网络人(生活在网络 空间的虚拟人)、仿生人(高仿真智能人)和再生人(具有自然人特征的“复制人”)。预计这次科 技革命大约将在 2020-2050 年到来。回顾前几次科技革命,数学大都起到了先导和支柱的作用。因此 有理由相信:数学必将成为下一次科技革命最重要的推动力之一。我们要以早日实现中国梦的强烈责 任感和紧迫感,加速建设数学强国,为在下次科技革命中赢得主动、抢占先机,奠定坚实基础,提供 强大动力!

(作者为北京大学数学科学学院教授、中国科学院院士、第三世界科学院院士)

数学会奖项

华罗庚奖

华罗庚奖

华罗庚先生是我国著名数学家

华罗庚先生是我国著名数学家,他热爱祖国,献身科学事业,一生为发展我国的数学事业和培养人才做出了卓越贡献。

陈省身奖

陈省身奖

陈省身教授是一位国际数学大师

国际数学大师陈省身教授是美籍华裔数学家、中国科学院外籍院士。他非常关心祖国数学事业的发展,几十年来在发展我国数学事业、培养数学人才等方面做了大量工作。

钟家庆奖

钟家庆奖

钟家庆教授生前对祖国数学事业的发展极其关切

钟家庆教授生前对祖国数学事业的发展极其关注,并为之拚搏一生。为了纪念并实现他发展祖国数学事业的遗愿,数学界有关人士于1987年共同筹办了钟家庆基金,并设立了钟家庆数学奖,委托中国数学会承办。

扫描二维码关注数学会

关注微信

扫描二维码关注

京ICP备17012431号   京公网安备 110402430128号 版权所有:中国数学会  法律法规 | OA/ERP系统